

2021 INDUSTRIAL PRETREATMENT PROGRAM ANNUAL REPORT

City of Marlborough, MA MA0100480

Mr. Justin Pimpare Regional Pretreatment Coordinator EPA New England 5 Post Office Square Suite 100 OEP 06-03 Boston, MA 02109 John F. Murphy Marlborough Water and Sewer Department 135 Neil St. Marlborough, MA

Dear Mr. Pimpare;

This Annual Report covers the time of July 1, 2020 through July 31, 2021.

- (1) See Attachment labeled "Significant Industrial Users".
- (2) <u>Industrial inspections</u> were performed on eleven (11) Significant Industrial Users.

API Technologies (3/8/21), Dav-Tech Plating, Inc. (3/29/21), Diamond Machine Technology, Inc. (5/13/21), Gotham Ink Corp. (4/12/21), Ken's Foods, Inc. (3/15/21), Ktron, Inc. (3/18/21), Massachusetts Water Resources Authority (4/16/21), Quest Diagnostics (3/25/21), Rohm & Hass Chemical, (3/11/21), Ruland Mfg. Co. (4/5/21), Saint-Gobain High Performance Materials (4/8/21),

Significant Industrial Users that were sampled during this period:

API Technologies (3/8/21), Dav-Tech Plating, Inc. (3/29/21), Ken's Foods, Inc. (3/15/21), Ktron, Inc. (3/18/21), Massachusetts Water Resourses Authority (4/16/21), Quest Diagnostics (3/25/21), Rohm & Hass Chemical, (3/11/21), Ruland Mfg. Co. (4/5/21), Saint-Gobain High Performance Materials (4/8/21),

• Diamond Machine Technology, Inc. and Gotham Ink Corp. are not sampled, as they have zero discharge industrial permits. The zero discharge was verified during the facility inspections.

Verbal notifications:

- (3) All Significant Industrial Users currently have a valid Industrial Wastewater Discharge Permit issued by the City of Marlborough.
 - John F. Murphy is the City of Marlborough's Industrial Pretreatment and FOG Coordinator hired in February of 2021. The laboratory staff consists of Chemist Alaina Davis and Assistant Chemist Andrew Burke. This year's scheduling, sampling and inspections of industrial users was carried out by John Murphy and Andrew Burke.

- (4) See Attachments: "Current Local Limits", "Town of Northborough Influent to the West Plant", "Bioassay Summaries", "West Plant Influent and Effluent Analyses", "West Plant Sludge Analyses", and "Significant Industrial Users".
- (5) The Westerly Wastewater Treatment Plant did not experience interference or pass through during this pretreatment period.
- (6) The City continues to use a camera to investigate and correct I/I throughout the sewer system.
- (7) We continue to have a very good working relationship with all industrial users permitted by the City. They are all aware of the importance of meeting their permit requirements and have been very cooperative with our staff.

If you or your staff has any questions, please call me at (508)-624-6910, ext 33405. Respectfully,

John F. Murphy
IPP/FOG Coordinator
City of Marlborough DPW
jmurphy@marlborough-ma.gov

CC: Sean Divoll, DPW Commissioner Christopher LaFreniere, Assistant Commissioner - Utilities Mass. DEP, Bureau of Waste Prevention

EPA Region 1 Annual Pretreatment Report Summary Sheet

POTW Name:	Marlborough West V	WWTP	
NPDES Permit #:	MA0100480		
Pretreatment Report Star	t Date: July 1, 2020	***************************************	Managhan 1997
Pretreatment Report End	Date: <u>July 31, 2021</u>		
# of Significant Industrial	Users (SIUs):	11	
# of SIUs Without Contro	l Mechanisms:	0	
# of SIUs not Inspected:		0	
# of SIUs not Sampled:			0 Discharge
# of SIUs in Significant No	oncompliance (SNC)		
with Pretreatment Standa	rds:	0	
# of SIUs in SNC with Rep	porting Requirements:		
# of SIUs in SNC with Pre	treatment Compliance		
Schedule:			
# of SIUs in SNC Publishe	ed in Newspaper:	0	<u> </u>
# of SIUs with Complianc	e Schedules:	0	
# of Violation Notices Issu	ed to SIUs:		
# of Administrative Order	rs Issued to SIUs:	0	
# of Civil Suits Filed Agai	nst SIUs:	0	
# of Criminal Suits Filed	Against SIUs:	0	
# of Categorical Industria	d Users (CIUs):		
# of CIUs in SNC:			

PENALTIES

Total Dollar Amou	int of Penalties Collected:	0
# of IUs from whic	h Penalties have been Collected:	0
LOCAL LIMITS		
Date of Most Rece	nt Technical Evaluation of Local Lin	nits: June 2004
Date of Most Rece Local Limits:	nt Adoption of Technically Based	May 11, 2007
Pollutant	Limit (mg/l)	MAHL (lb/day)

See Table #9 "Maximum allowable head works loading for pollutants of concern" taken from CDM June 2004. "Local Industrial Discharge Limits Report Draft" which was accepted by the EPA and adopted by the City Council of Marlborough on May 11, 2007.

Current Local Limits

Table 1
Daily Industrial Limits

				- Library - Libr
		Daily Maximum		
Parameter	Units	Limits	Sample Type	
Aluminum	mg/l	NLS	C	
Ammonia, nitrogen	mg/l	50	С	
Antimony	mg/l	NLS	C	
Arsenic	mg/l	0.42	C	
Beryllium	mg/l	0.12	C	
BOD5	mg/l	350	C	
Cadmium	mg/l	0.1	C	
Chromium	mg/l	0.77	C	
COD	mg/l	NLS	С	
Copper	mg/l	0.3	C	
Cyanide	mg/l	0.45	G	
Flow, Process**	gpd		D	
Flow, Total	gpd		С	
Lead	mg/I	0.1	C	
Mercury	mg/l	0.0007	C	
Nickel	mg/l	0.6	C	
Oil and Grease	mg/l	100	G	
Hq	SU	6.0-10.5	D	
Phenol	mg/l	NLS	6	
Selenium	mg/l	0.81	С	
Silver	mg/l	0.25	C	
Thallium	mg/l	0.93	С	
Total Phosphorus	mg/l	25	C	
Total Toxic Organics*	mg/l	2.13	G/C	
TSS	mg/l	350	С	
Zinc	mg/l	3.7	С	
All Parameters will be tested at the Most Stringent Limit	tested a	at the Most String	ent Limit	
*TTO will be sampled	as CFR 4	10-433.11 with 62	4 as a grab samp	*TTO will be sampled as CFR 40-433.11 with 624 as a grab sample and the 625 and 608 as a composite sample.
*All TTO Parameters a	bove 0.	01 mg/L shall be a	dded toward th	*All TTO Parameters above 0.01 mg/L shall be added toward the 2.31 Daily Maximium Limit.
**Measured at Outfall				
Abbreviations: C = Co	mposite	C = Composite, G = Grab, D = Da	ily, NLS = No Lin	D = Daily, NLS = No Limit Set, M= Monthly, Q= Quarterly, S= Semiannual, Y=Yearly (Annually)

Town of Northborough Influent to the West Plant

CERTIFICATE OF ANALYSIS

D1F0954

Northborough Water Department

Tim Davison 63 Main Street Northborough, MA 01532

Project Name: Water/Sewer Department

Project / PO Number: Water/Sewer Department

Received: 06/09/2021 Reported: 06/30/2021

Case Narrative

Per the subcontract lab: "Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Analytical Testing Parameters

Client Sample ID:

Hudson ST Wastewater Pump Station

Sample Matrix: Lab Sample ID: Wastewater D1F0954-01 Collected By: Collection Date: Customer 06/09/2021

Analyses Performed by: Microbac Laboratories, Inc. - Dayville

Inorganics Total	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 350.1, Rv. 2 (1993)								
Ammonia as N	32.0	1.00	mg/L	20		06/14/21 1107	06/14/21 1448	CLW
EPA 365.1, Rv. 2 (1993)			Method Not	es: D1				
Phosphorus - Total as P	7.79	0.0850	mg/L	2		06/09/21 1900	06/10/21 1125	CLW
Hach 8000								
Chemical Oxygen Demand (COD)	898	5.00	mg/L	1		06/14/21 1330	06/14/21 1530	DJM
SM 2540 D-2011								
Total Suspended Solids (TSS)	68.0	25.0	mg/L	10		06/10/21 2050	06/11/21 1600	TJT
SM 5210 B-2011							•	
Biochemical Oxygen Demand (BOD5)	164	120	mg/L	60		06/09/21 2021	06/14/21 1428	AKS
Metals Total by CVAA	Result	RL.	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 245.2								
Mercury	<0.00020	0.00020	mg/L	1		06/15/21 1208	06/15/21 1439	MMC
Metals Total by ICP	Result	RL.	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 200.7, Rv. 4.4 (1994)								
Aluminum	0.831	0.0500	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Antimony	<0.0030	0.0030	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Arsenic	<0.0050	0.0050	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Beryllium	<0.0010	0.0010	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Cadmium	<0.0020	0.0020	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Chromium	0.0050	0.0020	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Copper	0.154	0.0020	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Lead	0.0075	0.0030	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Nickel	0.0051	0.0050	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Selenium	<0.0050	0.0050	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Silver	<0.0020	0.0020	mg/L	1		06/10/21 1049	06/26/21 0238	JDF
Thallium	<0.0050	0.0050	mg/L	1		06/10/21 1049	06/15/21 1815	DLO
Zinc	0.327	0.0050	mg/L	1		06/10/21 1049	06/15/21 1815	DLO

CERTIFICATE OF ANALYSIS D1F0954

Client Sample ID:

Hudson ST Wastewater Pump Station

Sample Matrix:

Naphthalene

Wastewater

Collected By:

Customer

Lab Sample ID:

D1F0954-01

Collection Date:

06/09/2021

Lab Sample ID: D1F0954-01					Collection L	Jate: 06/09	12021	
	Analyses Performe	d by: Pho	enix Enviro	nmental L	abs			
Semivolatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analy
EPA 625.1								
Acenaphthene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Acenaphthylene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Anthracene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
1,2-Diphenylhydrazine	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzidine	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzo[a]anthracene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzo[a]pyrene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzo[b]fluoranthene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzo[g,h,i]perylene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Benzo[k]fluoranthene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
4-Bromophenyl phenyl ether	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Butyl benzyl phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
4-Chloro-3-methylphenol	170	48	ug/L	10		06/11/21 0000	06/14/21 0000	
bis(2-Chloroethoxy)methane	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
bis(2-Chloroethyl) ether	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2-Chloronaphthalene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2-Chlorophenol	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
4-Chlorophenyl phenylether	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Chrysene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Dibenz(a,h) anthracene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Di-n-butyl phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
3,3-Dichlorobenzidine	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2,4-Dichlorophenol	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Diethyl phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2,4-Dimethylphenol	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Dimethyl phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2,4-Dinitrophenol	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2,4-Dinitrotoluene (2,4-DNT)	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
2,6-Dinitrotoluene (2,6-DNT)	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Di-n-octyl phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	I
bis(2-Ethylhexyl)phthalate	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Fluoranthene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Fluorene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	
Hexachlorobenzene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	1
Hexachlorobutadiene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	ļ.
Hexachlorocyclopentadiene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	ı
Hexachloroethane	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	I
Indeno(1,2,3-cd) pyrene	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	ŀ
Isophorone	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	l
2-Methyl-4,6-dinitrophenol	<48	48	ug/L	10		06/11/21 0000	06/14/21 0000	ř
	.40	40		40		00/44/04 0000	06/14/21 0000	

Microbac Laboratories, Inc.

ug/L

48

<48

10

06/11/21 0000

06/14/21 0000

CERTIFICATE OF ANALYSIS D1F0954

Client Sample ID: Hudson ST Wastewater Pump Station

Sample Matrix: Wastewater

Collected By:

Customer 06/09/2021

Lab Sample ID: D1F0954-01					Collection I	Date: 06	/09/2021	
Semivolatile Organic Compounds by GCMS	Resul	RL	Units	DF	Note	Prepared	l Analyzed	Analys
Nitrobenzene	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
2-Nitrophenol	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
4-Nitrophenol	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
n-Nitrosodimethylamine	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
n-Nitrosodiphenylamine	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
n-Nitrosodi-n-propylamine	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
2,2'-Oxybis(1-Chloropropane)	<48	3 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
Pentachlorophenol	<48	48	ug/L	10		06/11/21 00	00 06/14/21 0000	
Phenanthrene	<48	3 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
Phenol	45.	J 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
Pyrene	<48	3 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
1,2,4-Trichlorobenzene	<48	3 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
2,4,6-Trichlorophenol	<48	3 48	ug/L	10		06/11/21 00	00 06/14/21 0000	
Surrogate: 2-Fluorobiphenyl	Dil out	Limit: 30-130	% Rec	10		06/11/21 00	00 06/14/21 0000	
Surrogate: 2-Fluorophenol	Dil out	Limit: 10-130	% Rec	10		06/11/21 00	00 06/14/21 0000	
Surrogate: Nitrobenzene-d5	Dil out	Limit: 15-130	% Rec	10		06/11/21 00	00 06/14/21 0000	
Surrogate: Phenol-d5	Dil out	Limit: 10-130	% Rec	10		06/11/21 00	00 06/14/21 0000	
Surrogate: p-Terphenyl-d14	Dil out	Limit: 30-130	% Rec	10		06/11/21 00	00 06/14/21 0000	
Surrogate: 2,4,6-Tribromophenol	Dil out	Limit: 15-130	% Rec	10		06/11/21 00	00 06/14/21 0000	

Client Sample ID:

Hudson ST Wastewater Pump Station

Sample Matrix: Lab Sample ID: Wastewater D1F0954-02 Collected By: Collection Date:

Customer 06/09/2021

Analyses Performed by: Microbac Laboratories, Inc. - Dayville

	, and jood i on on hou	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,			
Inorganics Total	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 1664A			Method Not	es: A34				
Oil & Grease	17.6	4.00	mg/L	1		06/14/21 1154	06/15/21 1528	HEP
EPA 335.4, Rv. 1 (1993)								
Cyanide - Total	<0.0100	0.0100	mg/L	1	Q11	06/14/21 1452	06/15/21 1043	CLW
EPA 420.1								
Phenois	0.186	0.0300	mg/L	1		06/14/21 0930	06/15/21 0931	CLW

Analyses Performed by: New England Testing Laboratory

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 624.1								
2-Chloroethyl vinyl ether	Attached	20	ug/L	1			06/11/21 0000	SUB
1,1,1-Trichloroethane	Attached	1	ug/L	1			06/11/21 0000	SUB

CERTIFICATE OF ANALYSIS D1F0954

Definitions

A34:

The entire bottle volume was not used. A reduced sample volume was used due to sample matrix.

D1:

The sample was diluted during sample preparation (extraction, distillation or digestion) due to matrix interference.

MCL:

US EPA Maximum Contaminant Level

mg/L:

Milligrams per Liter

Q11:

The recovery for the low level check standard was outside of the quality control range.

RL:

Reporting Limit

ug/L:

Micrograms per Liter

Project Requested Certification(s)

Microbac Laboratories, Inc. - Dayville

M-CT008

New England Testing Laboratory

PH-0740

M-RI010

Phoenix Environmental Labs

PH-0618

M-CT007

Massachusetts Department of Environmental Protection

Connecticut Department of Public Health

Massachusetts Department of Environmental Protection

Connecticut Department of Public Health

Massachusetts Department of Environmental Protection

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Montgomery

Melisa L. Montgomery Quality Assurance Officer Reported: 06/30/2021 16:21

Microbac Laboratories, Inc.

Microbac Labor Microbac Labor © MICROBAC® 61 Louisa Vic		ab WO #:
	Northborough Water Department	roject Manager.
CONTRACTOR OF PERSONS OF A CONTRACTOR OF THE SOLVE OF THE	を認識	Project: Hudwa ST Sevel STU
62 - 52 ST	ADDRESS	57
ないかいののかいつい		Project Mar: Steve To Bes
ייין ואסייטיין ואסייטיין	ATTN: Scott	IN CASE WE HAVE ANY QUESTIONS WHEN SAMPLES ARRIVE WE SHOULD CALL.
PHONE:	PHONE: 508-313	PHONE 508-438-3108
PHONE-CAS-253-CO37 FAX: COS-6353-6996	PURCHASE ORDER #	FAX: 308-343-6996
700000000000000000000000000000000000000	ady.ajgunes	Analysis
Sample Identification Collected Collected	Sample	ŀ
N 9 TIME	Comp Grab	HLO HHO HCI NON
	m	>
	7	5
	7	>
· ·	- >	
	V 3 PRESERVATIVE	TVE .
	VERIFIED	
	/ s Initials	>
	4	2
GUSTODYNRANISHER	TURNAROUND TIME REQUESTED	
SAMPLER STRUE JOISES	95ume 2021 10:115 BARBER HEBERT CONTROLL OF THE PROPERTY CONTRACTOR OF THE	
BECEIVED: A L S.	72:53 Girde Delivery Method:	HAKD COPY
A C	1557 40/ED P71	36 Fat WASTE WATER
	j	
S RELINQUISHED:	CONDITIONS UPON	
RECEIVED:	COOLED 1	AMBIENT (\(\) \(
		- 24

Bioassay Summaries

July 16, 2021

Dennis L'Homme City of Marlborough Marlborough Westerly Wastewater Treatment Facility 303 Boundary Street Marlborough, Massachusetts 01752

Enclosed, please find one (1) copy of our report evaluating results of toxicity tests completed on effluent samples collected from the Marlborough, Massachusetts Westerly Wastewater Treatment Facility during the June 2021 testing period. Acute and chronic toxicity was evaluated using the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*.

Please do not hesitate to call me should you have any questions regarding the report.

Sincerely,

Enthalpy Analytical, LLC

Meredith Wheeler Project Manager

Enclosure

WET Test Report Certification Report 35174-21-06 Email Only

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

Permittee Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:	
	Authorized Signature
	Print or Type Name
	City of Marlborough
	Print or Type the Permittee's Name
	MA0100480
	Type or Print the NPDES Permit No.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: July 16, 2021

Meredith Wheeler Object Manager, Call of the Company of the Company

Meredith Wheeler NPDES Project Manager - Enthalpy Analytical, LLC

TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: June 2021

Marlborough Westerly Wastewater Treatment Facility
Marlborough, Massachusetts
NPDES Permit Number MA0100480

Prepared For:

City of Marlborough Marlborough Westerly Wastewater Treatment Facility 303 Boundary Street Marlborough, Massachusetts 01752

Prepared By:

Enthalpy Analytical, LLC One Lafayette Road Hampton, New Hampshire 03842

June 2021 Reference Number: Mariborough-West35174-21-06

STUDY NUMBER 35174

EXECUTIVE SUMMARY

The following summarizes the results of modified acute and chronic exposure bioassays performed in June 2021 to fulfill the NPDES requirements of the Marlborough, Massachusetts Westerly Wastewater Treatment Facility. Acute and chronic toxicity was evaluated using the freshwater species, Ceriodaphnia dubia and Pimephales promelas.

C. dubia, cultured at Enthalpy, were <24 hours old juveniles. P. promelas, supplied by a laboratory approved vendor, were <48 hours old at the start of the test. The receiving water collected from the Assabet River upstream of the discharge was used as a control only. Dilution water for both assays was Brentwood Springs Water, provided by an outside source. Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications except where otherwise noted.

The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s), and are to be used only by the submitter. Results from the chronic and modified acute exposure assays and their relationship to permit limits are summarized in the following matrix.

Acute Toxicity Evaluation

			-	Permit Limit	Effluent Meets	Assay Meets
Species	Exposure	LC-50	A-NOEC	(LC-50)	Permit Limit	Protocol Limits
Ceriodaphnia dubia	48 Hours	>100%	NC	≥100%	Yes	Yes
Pimephales promelas	48 Hours	>100%	NC	≥100%	Yes	Yes

Chronic Toxicity Evaluation

				Permit Limit	Effluent Meets	Assay Meets
Species	Exposure	C-NOEC	IC-25	(C-NOEC)	Permit Limit	Protocol Limits
Ceriodaphnia dubia	7 Days	100%	NC	≥40%	Yes	Yes
Pimephales promelas	7 Days	100% a	>100% a	≥40%	Yes ^a	Yes

COMMENTS:

NC = Not Calculated.

^a The MSDp for minnow dry biomass was computed as 10%, which is below the lower limit of 12% specified by the method protocol. The lower MSDp would suggest that the assay data had very little variability and that the statistical analysis may be more likely to identify a "Significantly Different" response than if the assay had greater variability and a higher MSDp. Computation of the IC-25 for growth resulted in a value of >100% and all test acceptability criteria were met. The C-NOEC is 100% on the basis that this result determines that the test is more sensitive than required.

TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: June 2021

Marlborough Westerly Wastewater Treatment Facility

Marlborough, Massachusetts
NPDES Permit Number MA0100480

1.0 INTRODUCTION

This report presents the results of toxicity tests completed on a series of composite effluent samples collected from the Mariborough, Massachusetts Westerly Wastewater Treatment Facility (Mariborough Westerly WWTF). Testing was based on programs and protocols developed by the US EPA (2002), with exceptions as noted by US EPA Region I (2011, 2013), and involved completing modified acute and chronic toxicity tests with the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*. Testing was performed at Enthalpy Analytical, LLC (Enthalpy), Hampton, New Hampshire in accordance with the provisions of TNI Standards (2009).

Acute toxicity tests involve preparing a series of test concentrations by diluting test samples with control water. Groups of test organisms are exposed to each test concentration and a control for a specified period. The mortality data for each concentration can be used to calculate the median lethal concentration or LC-50, defined as the concentration of effluent that kills half of the test organisms. Samples with a high LC-50 value are less likely to cause significant environmental impacts. These data can also be analyzed to determine the no effect level. This Acute No Observed Effect Concentration (A-NOEC) is defined as the highest tested effluent concentration that causes no significant mortality. Chronic toxicity tests measure sublethal effects, exposing test organisms to samples during a sensitive period in the life cycle. Minnow chronic tests measure survival and growth (weight) during the first seven days post hatch, and daphnid chronic tests measure survival and juvenile production. Using Analysis of Variance techniques to evaluate the data, it is possible to determine the lowest tested concentration that had an effect (C-LOEC) and the highest tested concentration where no effect (C-NOEC) was observed. An Inhibition Concentration (IC) may be calculated by linear interpolation to confirm the C-NOEC in situations where a non-standard doseresponse or sample toxicity are encountered. The IC-25 is calculated to best approximate the C-NOEC (US EPA 2000).

2.0 MATERIALS AND METHODS

2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms (US EPA 2002), and for the analysis of water samples (APHA 2012). See Section 4.0 for a list of references.

2.2 Test Species

C. dubia were maintained in laboratory water at 25±1°C with a photoperiod of 16:8 hours light:dark. Cultures are fed daily with a yeast/trout chow/Cerophyll or alfalfa leaves (YTC) mixture supplemented with Pseudokirchneriella subcapitata (algae) (US EPA 2002). Adults on a brood board were isolated 24 hours prior to test start and allowed to reproduce for 8 hours.

When necessary, *P. promelas* were acclimated to approximate test conditions prior to use in the assay. Organisms were transferred to test chambers using an inverted glass pipet, minimizing the amount of water added to test solutions.

2.3 Effluent, Receiving Water, and Laboratory Water

Effluent and receiving water collection information is provided in Table 1. Samples were received at 0-6°C as per 40 CFR §136.3 unless otherwise noted, stored at 4±2°C and warmed to 25±1°C prior to preparing test solutions. Laboratory water was Brentwood Springs Water, provided by an outside supplier. This water has been used to successfully culture freshwater organisms.

Total residual chlorine (TRC) was measured by amperometric titration (MDL 0.02 mg/L) in the effluent samples prior to use in the assays. Samples with ≥0.02 mg/L TRC were dechlorinated using sodium thiosulfate (US EPA 2002) and a control treatment using laboratory water adjusted with the same amount of sodium thiosulfate used to dechlorinate the effluent was run concurrently with the assay. If sample pH measured <6.0 SU or >9.0 SU, samples were adjusted using sodium hydroxide or hydrochloric acid, respectively, and a control treatment using laboratory water adjusted with the same amount of either compound used to modify sample pH was run concurrently with the assay. When applicable, data from sodium thiosulfate and/or pH adjusted laboratory control treatments can be found in Appendix A.

2.4 Chronic Exposure Bioassays

The chronic toxicity tests were conducted according to protocol (US EPA 2002), which called for the daily renewal of test solutions. Test treatments for the assays were 100% (undiluted), 50%, 40%, 25%, 12.5% and 6.25% effluent. Dissolved oxygen, pH, temperature, and specific conductivity were measured in one replicate of each new test solution.

Test chambers for the daphnid assay were 30 mL portion cups containing approximately 20 mL of test solution in each of 10 replicates with 1 organism/replicate. Replicates were not randomized during testing; rather, organisms were added at test initiation by blocking by known parentage. Survival and juvenile production were monitored daily. Daphnids were each fed 200 µL of YCT supplemented with algae after daily renewals.

Test chambers for the fathead minnow assay were ≥500 mL beakers with 250 mL of solution in each of 4 replicates containing 10 organisms/replicate. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation). Prior to daily minnow renewals, survival and dissolved oxygen were measured in all replicates, and pH, temperature and specific conductance were measured in one replicate of each concentration. Fish were fed newly hatched *Artemia* nauplii daily. Dead nauplii from previous feedings were removed during daily renewals. On Day 7 of the assay, surviving fish were tranquilized using Finquel® tricaine methanesulfonate and rinsed in deionized water. Fish were placed on tared weighing pans and dried overnight at 104±5°C to obtain dry weight to 0.01 mg. Final dry biomass/fish for statistical comparisons was calculated by dividing the net dry weight by the number of organisms introduced on Day 0.

2.5 Data Analysis

Statistical analysis of acute and chronic exposure data was completed using CETISTM v1.9.6.3, Comprehensive Environmental Toxicity Information System, software. The program computes acute and chronic exposure endpoints based on US EPA decision tree guidelines specified in individual test methods. If survival in the highest test concentration is >50%, the LC-50 is obtained by direct observation of the raw data. As needed, the A-NOEC is determined as the highest test concentration that caused no significant mortality. For chronic exposure endpoints statistical significance was accepted at $\propto = 0.05$. For statistical calculations of *C. dubia* juvenile production, data from only the first three broods are used.

2.6 Quality Control

As part of the laboratory quality control program, reference toxicant evaluations are completed on a regular basis for each test species. These results provide regular laboratory performance evaluation through the comparison of historic data sets. See Table 2 for details.

3.0 RESULTS AND DISCUSSION

Results of the chronic and modified acute exposure assays completed using *C. dubia* and *P. promelas* are presented in Tables 3 and 4, respectively. Effluent and dilution water characteristics are presented in Table 5. US EPA Region I Attachment F toxicity test summary sheets are provided after the tables. Support data, including copies of laboratory bench sheets, are provided in Appendix A.

3.1 Chronic Exposure Bioassay - Ceriodaphnia dubia

Minimum test acceptability criteria require 80% control survival, mean production of 15 juveniles/female, production of 3 broods by at least 60% of control females, and the MSDp for reproduction to be 13%-47% (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

3.2 Chronic Exposure Bioassay - Pimephales promelas

Minimum test acceptability criteria require 80% control survival, a mean dry weight of 0.25 mg/fish based on Day 7 survival, and the MSDp for biomass to be 12%-30% (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 4 for test acceptability.

4.0 LITERATURE CITED

- 40 CFR §136.3. Code of Federal Regulations (CFR), Protection of the Environment (Title 40), Guidelines Establishing Test Procedures for the Analysis of Pollutants (Part 136), Identification of Test Procedures (sub-part 3), Table II-Required Containers, Preservation Techniques, and Holding Times.
- APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. Washington D.C.
- The NELAC Institute (TNI). 2009. Environmental Laboratory Sector, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis (TNI Standard). EL-V1-2009.
- US EPA. 2000. Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA 821-B-00-004.
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.
- US EPA. 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Fourth Edition. EPA-821-R-02-013.
- US EPA Region I. 2011. US EPA Region 1 Freshwater Acute Toxicity Test Procedure and Protocol. US EPA Region I Office, Boston, Massachusetts. February 28, 2011.
- US EPA Region I. 2013. Freshwater Chronic Toxicity Test Procedure and Protocol US EPA Region I. US EPA Region I Office, Boston, Massachusetts. June 2013.

TABLE 1. Sample Collection Information.

Marlborough Westerly WWTF Effluent Evaluation. June 2021.

		Collec	ction	Red	Receipt	
Sample Description	Туре	Date	Time	Date	Time	Temp [°] C
EFFLUENT						
Start	Comp	06/06-07/21	0730-0730	06/07/21	1005	14 a
First Renewal	Comp	06/08-09/21	0730-0730	06/09/21	1000	21 ª
Second Renewal RECEIVING WATER	Comp	06/10-11/21	0730-0730	06/11/21	1000	10 ^a
Start	Grab	06/07/21	0825	06/07/21	1005	14 ª
First Renewal	Grab	06/09/21	0835	06/09/21	1000	21 a
Second Renewal	Grab	06/11/21	0825	06/11/21	1000	10 a

COMMENTS:

TABLE 2. C. dubia Reference Toxicant Data.

Marlborough Westerly WWTF Effluent Evaluation. June 2021.

Date	Organism Lot	Endpoint	Value	Historic Mean/ Tendency	Acceptable Range	Reference Toxicant
C. dubia						
06/30/21	00CdEAH063021	Survival: LC-50	31.9	33,1	16.2 - 50.0	SDS (mg/L)
06/01/21	NA	Survival: C-NOEC	30	30	15 – 60	Copper (µg/L)
06/01/21	NA	Reproduction: C-NOEC	7.5	15	7.5 - 30	Copper (µg/L)
06/01/21	NA	Reproduction: MSDp	22.5	29.2	11.2 – 47.1	Copper (µg/L)
P. promelas	:					
06/30/21	06PpARO062821	Survival: LC-50	24.2	31.3	22.5 - 40.2	SDS (mg/L)
06/02/21	02PpABS060221	Survival: C-NOEC	10	10	5 – 20	SDS (mg/L)
06/02/21	02PpABS060221	Growth: C-NOEC	5	10	5 - 20	SDS (mg/L)
06/02/21	02PpABS060221	Growth: MSDp	31.4	26.4	1.2 – 51.5	SDS (mg/L)

Means and Acceptable Ranges based on the 20 most recent reference toxicant assays.

^a Upon receipt, the temperature was outside of the range of 0-6°C per 40 CFR §136.3 for NPDES effluent samples and support chemistry samples. Samples were received with ice in the cooler, and were picked up and hand delivered by Enthalpy's courier the day sampling was completed.

TABLE 3. *C. dubia* Chronic and Modified Acute Exposure Assay Data Summary. Marlborough Westerly WWTF Effluent Evaluation. June 2021.

Effluent	Mean Percent S	Mean Percent Survival		% Females Producing	Is There a Significant Difference Based on		
Conc.	Day 2	Day 7	(Juv/Female)	3 Broods	Survival (%)	Reproduction	
LAB	100%	100%	36.7	90%	-	-	
RW	100%	100%	29.7	80%	-	-	
6.25%	100%	100%	34.2	100%	No	No	
12.5%	100%	100%	33.3	100%	No	No	
25%	90%	90%	31.2	100%	No	No	
40%	100%	100%	35.5	100%	No	No	
50%	100%	100%	30.6	90%	No	No	
100%	100%	100%	31.1	100%	No	No	
	LC-50 = >100%		MSDp = 22.7%		NOEC = 100%	NOEC = 100%	

COMMENTS:

RW = Receiving Water; used as a control only. Laboratory water used as the diluent.

TABLE 4. P. promelas Chronic and Modified Acute Exposure Assay Data Summary.
Marlborough Westerly WWTF Effluent Evaluation. June 2021.

Effluent	Mean Percent Survival		Mean Biomass	Is There a Significant Difference Based on			
Conc.	Day 2	Day 7	(mg/fish)	Survival (%)	Growth (Biomass)		
LAB	100%	97.5%	0.583				
RW	100%	97.5%	0.571	-	-		
6.25%	100%	100%	0.540	No	No		
12.5%	100%	97.5%	0.557	No	No		
25%	97.5%	95%	0.657	No	No		
40%	100%	100%	0.636	No	No		
50%	100%	100%	0.498	No	Yes ^a		
100%	100%	100%	0.495	No	Yes ^a		

1 C_50 = \$10000 MSDs = 10.000 a NOEC = 10000 NOEC = 10000 a

WET Support Chemistry Data.
Marlborough Westerly WWTF Effluent Evaluation. June 2021. TABLE 5.

PARAMETER ^a	UNITS	EFFLUENT	RECEIVING WATER	LABORATORY WATER
Specific Conductivity	µmhos/cm	1527	720	370
pН	SU	7.48	7.60	8.30
Total Residual Chlorine	mg/L	<0.02	-	-
Alkalinity	mg/L	42	140	58
Hardness	mg/L	270	98	81
Total Solids	mg/L	900	-	-
Total Dissolved Solids	mg/L	810	-	-
Ammonia	mg/L as N	0.36	0.39	0.5
Total Organic Carbon	mg/L	4.9	5.9	0.70
Aluminum, total	mg/L	0.0086	0.11	0.0059
Cadmium, total	mg/L	0.00017	<0.0001	<0.0001
Copper, total	mg/L	0.011	0.0055	0.00036
Lead, total	mg/L	0.00023	0.00085	<0.0001
Nickel, total	mg/L	0.025	0.0016	<0.00063
Zinc, total	mg/L	0.016	0.028	0.0089

COMMENTS:

Additional water quality and analytical support data are provided in Appendix A.

^a Analytical results provided by Absolute Resource Associates, Inc. of Portsmouth, New Hampshire. A full copy of their report is available upon request.

TOXICITY TEST SUMMARY SHEET

FACILITY NAME:	Marlborough Westerly WW	TF TEST START DATE:	06/08/21
NPDES PERMIT NO.:	MA0100480	TEST END DATE:	06/15/21
TEST TYPE	TEST SPECIES	SAMPLE TYPE	SAMPLE METHOD
Acute	Pimephales promelas	Prechlorinated	Grab
Chronic	X Ceriodaphnia dubia	Dechlorinated	X Composite
X Modified Chronic	Daphnia pulex	Chlorine Spiked	
(Reporting Acute	Americamysis bahia	Chlorinated on	Site Other
Values)	Cyprinodon variegatu		
24 Hour Screen	Menidia beryllina	X No Detectable	Chlorine Upon Receipt
	Arbacia punctulata		
DILUTION WATER: Receiving water collect	ted at a point upstream or awa	ay from the discharge, free from	toxicity or other sources of
contamination; Receivi	ng Water Name: Assabet Riv	ver	toracity or care courses of
Alternate surface water	r of known quality and hardne	ss, to generally reflect the chara	cteristics of the receiving
water; Receiving Wate		, ,	G
		Q or equivalent deionized water :	and reagent grade chemicals;
	nbined with mineral water.		
Artificial sea salts mixe			·
Deionized water and h			
X Other: Brentwood Sprii	ngs Water		
EFFLUENT SAMPLING DATE			-11/21
EFFLUENT CONCENTRATI Permit Limit Concentration:	ONS TESTED (%): 10 ≥40 %	0, 50, 40, 25, 12.5, 6.25	
Permit Limit Concentration:	240%		
Was the effluent salinity adju	sted? No If	yes, to what level?	ppt
REFERENCE TOXICANT TO	EST DATE: 06/30/21	LC-50: 31.9 mg/L 8	Sodium Dodecyl Sulfate
	06/01/21	NOEC:7.5 μg/L (Copper
		AND TEST RESULTS	
	Test Acce	ptability Criteria	
Mass Diluont Control Commi	400 0/	14 4 1	
Mean Diluent Control Survi	val: <u>100</u> %	Mean # Juveniles/Fe	
		MSDp	<u>22.7</u> %

TOXICITY TEST SUMMARY SHEET

	10/10/11 1201 00/1		
FACILITY NAME:	Marlborough Westerly WWTF	TEST START DATE:	06/08/21
NPDES PERMIT NO.:	MA0100480	TEST END DATE:	06/15/21
TEST TYPE Acute Chronic X Modified Chronic (Reporting Acute Values) 24 Hour Screen	TEST SPECIES X Pimephales promelas Ceriodaphnia dubia Daphnia pulex Americamysis bahia Cyprinodon variegatus Menidia beryllina Arbacia punctulata	SAMPLE TYPE Prechlorinated Dechlorinated Chlorine Spiked in Lab Chlorinated on Site Unchlorinated X No Detectable Chlorine	SAMPLE METHOD Grab X Composite Flow-thru Other Upon Receipt
contamination; Receivi Alternate surface wate water; Receiving Wate Synthetic water prepar or deionized water con	ted at a point upstream or away froming Water Name: Assabet River of known quality and hardness, to go Name: The description of the management of the manag	generally reflect the characteristics	s of the receiving
EFFLUENT SAMPLING DATE EFFLUENT CONCENTRATE Permit Limit Concentration:		06/08-09/21 06/10-11/21 40, 25, 12.5, 6.25	****
Was the effluent salinity adju	sted? No If yes, to	what level?	ppt
REFERENCE TOXICANT T	****		Dodecyl Sulfate Dodecyl Sulfate
	PERMIT LIMITS AND T Test Acceptability		
Mean Diluent Control Surv	ival: <u>97.5</u> %	Mean Dry Weight: MSDp	0.599 mg

DECLII TO

DATA SHEETS

STATISTICAL SUPPORT

Contents	Number of Pages
Methods Used in NPDES Permit Biomonitoring Testing	1
C. dubia Chronic Reproduction Assay Daily Observation Bench Sheets	2
C. dubia Survival and Reproduction Statistical Analysis	6
C. dubia Reference Toxicant Analyses	4
C. dubia Blocking by Parentage Tracking Sheet	1
P. promelas 7 Day Chronic Assay Daily Observation Bench Sheet	1
Larval Fish Dry Weight Summary Sheet	1
P. promelas Reference Toxicant Analysis	4
P. promelas Survival and Growth Statistical Analysis	8
P. promelas Organism History	1
Water Quality Bench Sheets	2
Preparation of Dilutions	1
Analytical Chemistry Support Data Summary Report	6
Sample Receipt Record	1
Chain of Custody	6
Assay Review Checklist	1
Total Appendix Pages	46

METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

Parameter	Method
Acute Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-012 2002.0
Daphnia pulex	EPA-821-R-02-012 2021.0
Pimephales promelas	EPA-821-R-02-012 2000.0
Americamysis bahia	EPA-821-R-02-012 2007.0
Menidia beryllina	EPA-821-R-02-012 2006.0
Cyprinodon variegatus	EPA-821-R-02-012 2004.0
Chronic Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-013 1002.0
Pimephales promelas	EPA-821-R-02-013 1000.0
Cyprinodon variegatus	EPA-821-R-02-014 1004.0
Menidia beryllina	EPA-821-R-02-014 1006.0
Arbacia punctulata	EPA-821-R-02-014 1008.0
Champia parvula	EPA-821-R-02-014 1009.0
Wet Chemistries:	
Chlorine, Residual	Standard Methods 22 nd Edition - Method 4500-CI D
Specific Conductance	Standard Methods 22 nd Edition - Method 2510 B
pH	Standard Methods 22 nd Edition - Method 4500-H+ B
Dissolved Oxygen	Standard Methods 22 nd Edition - Method 4500-O G

West Plant Influent and Effluent Analysis

CERTIFICATE OF ANALYSIS

D1D2663

City of Marlborough

Alaina Davis 303 Boundary St. Marlborough, MA 01752 Project Name: West Plant

Project / PO Number: 20210043

Received: 04/28/2021 Reported: 05/14/2021

Analytical Testing Parameters

Client Sample ID:	West Plant Influent		
Sample Matrix: Lab Sample ID:	Wastewater D1D2663-01	Collected By: Custome Collection Date: 04/28/20.	

Lub Campic ID. 010200001		-						
Semivolatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 625.1								
Acenaphthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Acenaphthylene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Azobenzene	<1.00	1.00	ug/L	1	Y1	05/03/21 1000	05/06/21 0346	GMP
Benzidine	<5,00	5.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[a]anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[a]pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[b]fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[g,h,i]perylene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[k]fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Bromophenyl phenyl ether	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Butyl benzyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Chloro-3-methylphenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bis(2-Chloroethoxy)methane	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bis(2-Chloroethyl) ether	<0.500	0.500	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Chloronaphthalene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Chlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Chlorophenyl phenylether	<1.00	1.00	ug/L.	1		05/03/21 1000	05/06/21 0346	GMP
Chrysene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Dibenz(a,h) anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Di-n-butyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
3,3-Dichlorobenzidine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dichlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Diethyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dimethylphenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Dimethyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dinitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dinitrotoluene (2,4-DNT)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,6-Dinitrotoluene (2,6-DNT)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Di-n-octyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bis(2-Ethylhexyl)phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Fluorene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorobutadiene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorocyclopentadiene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS D1D2663

Client Sample ID: West Pla Sample Matrix: Wastewa

West Plant Influent

ah Sample ID:

Wastewater

Collected By:

Customer

Collection Date:

04301163 04/202024 7

Lab Sample ID: D1D2663-01					Collection	Date: 04/28/	04/28/2021 7:45	
Semivolatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Hexachloroethane	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Indeno(1,2,3-cd) pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Isophorone	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Methyl-4,6-dinitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Naphthalene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Nitrobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Nitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Nitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodimethylamine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodiphenylamine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodi-n-propylamine	<5.00	5.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,2'-Oxybis(1-Chloropropane)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Pentachlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Phenanthrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Phenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
1,2,4-Trichlorobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4,6-Trichlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2-Fluorobiphenyl	30.0	Limit: 5-114	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2-Fluorophenol	0.140	Limit: 12-67	% Rec	1	S2	05/03/21 1000	05/06/21 0346	GMP
Surrogate: Nitrobenzene-d5	32.1	Limit: 15-314	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: Phenol-d6	0.220	Limit: 12-46	% Rec	1	S2	05/03/21 1000	05/06/21 0346	GMP
Surrogate: p-Terphenyl-d14	41.2	Limit: 36-94	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2,4,6-Tribromophenol	0	Limit: 28-101	% Rec	1	S2	05/03/21 1000	05/06/21 0346	GMP

CERTIFICATE OF ANALYSIS D1D2663

Client Sample ID:West Plant InfluentSample Matrix:WastewaterCollected By:CustomerLab Sample ID:D1D2663-02Collection Date:04/28/20217:45

Lab Sample ID: D1D2663-02					Collection Date:			04/28/2021 7:45	
Pesticides and Polychlorinated Biphenyls (PCBs) by GC/ECD	Result	RL	Units	DF	Note	Prepar	ed	Analyzed	Analys
EPA 608.3 GC-ECD									
Aldrin [2C]	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
alpha-BHC	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
(alpha-Hexachlorocyclohexane) [2C] beta-BHC	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
(beta-Hexachlorocyclohexane) [2C]	<0.00400	0.00400	!!	4		04/00/04	4000	DEMONDA ADOS	MOD
delta-BHC (2C)	<0.00400	0.00400	ug/L	1		04/29/21		05/13/21 1602	
gamma-BHC (Lindane) [2C]	<0.00400	0.00400	ug/L	1		04/29/21		05/13/21 1602	
Chiordane (tech.) [2C]	<0.200	0.200	ug/L	1		04/29/21		05/13/21 1602	
4,4'-DDD [2C]	<0.00400	0.00400	ug/L 	1		04/29/21		05/13/21 1602	
4,4'-DDE [2C]	<0.00400	0.00400	ug/L	1		04/29/21		05/13/21 1602	
4,4'-DDT [2C]	<0.00400	0.00400	ug/L	1		04/29/21		05/13/21 1602	
Dieldrin [2C]	<0.00400	0,00400	ug/L	1		04/29/21		05/13/21 1602	
Endosulfan I	0.0109	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Endosulfan II [2C]	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Endosulfan Sulfate [2C]	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Endrin [2C]	<0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Endrin Aldehyde [2C]	<0.0200	0.0200	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Heptachlor [2C]	< 0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Heptachlor epoxide [2C]	< 0.00400	0.00400	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Toxaphene [2C]	<1.00	1.00	ug/L	1		04/29/21	1000	05/13/21 1602	MRB
Aroclor-1016 (PCB-1016)	<0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroclor-1221 (PCB-1221)	<0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroclor-1232 (PCB-1232)	< 0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroctor-1242 (PCB-1242)	<0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroclor-1248 (PCB-1248)	<0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroclor-1254 (PCB-1254)	<0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Aroclor-1260 (PCB-1260)	< 0.400	0.400	ug/L	1		04/29/21	1000	05/11/21 1753	MRB
Surrogate: Decachlorobiphenyl (BZ-209)	72.4	Limit: 30-130	% Rec	1		04/29/21	1000	05/11/21 1753	MRB
Surrogate: Decachlorobiphenyl (BZ-209)	59.9	Limit: 30-110	% Rec	1		04/29/21	1000	05/13/21 1602	MRB
Surrogate: Decachlorobiphenyl (BZ-209) [2C]	60.8	Limit: 30-110	% Rec	1		04/29/21	1000	05/13/21 1602	MRB
Surrogate: 2,4,5,6-Tetrachloro-m-xylene	60.8	Limit: 30-110	% Rec	1		04/29/21	1000	05/13/21 1602	MRB
Surrogate: 2,4,5,6-Tetrachloro-m-xylene	64.2	Limit: 30-130	% Rec	1		04/29/21	1000	05/11/21 1753	MRB
Surrogate: 2,4,5,6-Tetrachloro-m-xylene [2C]	53.8	Limit: 30-110	% Rec	1		04/29/21	1000	05/13/21 1602	MRB

CERTIFICATE OF ANALYSIS

			D1D2	663					
Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Influent Wastewater D1D2663-03					Collected E	•	ustomer 4/28/2021 7:45	
Inorganics Total		Result	RL	Units	DF	Note	Prepare	d Analyzed	Analyst
SM 2540 D-2011									
Total Suspended Soli	ds (TSS)	<10.0	10.0	mg/L	4		04/29/21 20	020 04/30/21 1658	TJT
SM 5210 B-2011									
Biochemical Oxygen	Demand (BOD5)	<2.00	2.00	mg/L	1		04/28/21 19	917 05/03/21 1319	AKS
Inorganics Dissolved		Result	RL	Units	DF	Note	Prepare	d Analyzed	Analyst
EPA 365.1, Rv. 2 (199	3)								
Phosphorus - Total as		0.0616	0.0106	mg/L	1		04/28/21 19	900 - 04/29/21 1149	CLW
Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Influent Wastewater D1D2663-04	,				Collected I	•	ustomer 4/28/2021 7:45	
Metals Total by CVAA		· Result	RL	Units	DF	Note	Ргераге	d Analyzed	Analyst
EPA 245.2 Mercury		<0.00020	0.00020	mg/L	1		04/29/21 1	203 04/29/21 1359	MMC
Metals Total by ICP	·	Resuit	RL	Units	DF	Note	Prepare	d Analyzed	Analyst
EPA 200.7, Rv. 4.4 (19	994)								
Aluminum	•	<0.0500	0.0500	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Antimony		<0.0150	0.0150	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Arsenic		<0.0050	0.0050	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Beryllium		<0.0010	0.0010	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Cadmium		<0.0020	0.0020	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Chromium		<0.0020	0.0020	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
Соррег		0.0151	0.0020	mg/L	1		04/29/21 1	349 04/30/21 1716	DLO
							0.1100.0011	040 04/00/04 4740	DI 0

<0.0030

< 0.0100

<0.0020

< 0.0050

0.0373

0.0180

Lead

Nickel

Silver

Zinc

Selenium

Thallium

0.0030

0.0050

0.0100

0.0020

0.0050

0.0050

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

1

1

1

04/29/21 1349

04/29/21 1349

04/29/21 1349

04/29/21 1349

04/29/21 1349

04/29/21 1349

04/30/21 1716

04/30/21 1716

04/30/21 1716

04/30/21 1716

04/30/21 1716

04/30/21 1716

DLO

DLO

DLO

DLO

DLO

DLO

CERTIFICATE OF ANALYSIS D1D2663

Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Influent Wastewater D1D2663-05					Collected B	-	Custor 04/28/	ner 2021 7:45	
Inorganics Total		Result	RL	Units	DF	Note	Note Prepared		Analyzed	Analyst
EPA 350.1, Rv. 2 (1993	3)									
Ammonia as N		0.112	0.0500	mg/L	1		04/30/21	1025	05/03/21 1652	CLW
EPA 365.1, Rv. 2 (199	3)									
Phosphorus - Total as	sР	0.0871	0.0106	mg/L	1		04/28/21	1900	04/29/21 1140	CFM
Hach 8000										
Chemical Oxygen De	mand (COD)	21.8	5.00	mg/L	1		05/03/21	1826	05/03/21 1829	DJM
Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Influent Wastewater D1D2663-06			· · ·		Collected B	•	Custor 04/28/	mer 2021 8:00	
Inorganics Total		Result	RL	Units	DF	Note	Prepared		Analyzed	Analys
EPA 335.4, Rv. 1 (199	3)									
Cyanide - Total	•	<0.0100	0.0100	mg/L	1	Q11	04/30/21	1549	05/03/21 1316	CLW
Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Influent Wastewater D1D2663-07			, t d		Collected B	•	Custor 04/28/	mer 2021 8:00	-41-,13-4-1-11111111
Inorganics Total		Result	RL	Units	DF	Note	Prepa	red	Analyzed	Analyst
EPA 1664A										
Oil & Grease		<2.11	2.11	mg/L	1		04/29/21	1055	04/30/21 1458	HEP
Client Sample ID:	West Plant Influent									
Sample Matrix: Lab Sample ID:	Wastewater D1D2663-08					Collected E	-	Custo 04/28/	mer 2021 8:00	
Inorganics Total		Result	RL	Units	DF	Note	Prepa	red	Analyzed	Analysi
EPA 420.1										
Phenois		< 0.0300	0.0300	mg/L	1		05/04/21	0050	05/04/21 1629	CLW

CERTIFICATE OF ANALYSIS D1D2663

Client Sample ID:West Plant InfluentSample Matrix:WastewaterCollected By:CustomerLab Sample ID:D1D2663-09Collection Date:04/28/20218:00

Lab Sample ID: D1D2663-09			***************************************		Collection D	vate: U4/28	/2021 8:00	
Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analysi
EPA 624.1								
Acetone	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Acrolein	<20.0	20.0	ug/L	1			04/29/21 1902	JAN
Acrylonitrile	<20.0	20.0	ug/L	1			05/04/21 2146	RSD
Benzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Bromodichloromethane	<5.00	5.00	ug/L	1		•	05/04/21 2146	RSD
Bromoform	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Bromomethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Butanone (MEK)	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Carbon disulfide	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
Carbon tetrachloride	<5.00	5.00	ug/L	1		,	05/04/21 2146	RSD
Chlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Chloroethane (Ethyl chloride)	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Chloroethyl vinyl ether	<20.0	20.0	ug/L	1			04/29/21 1902	JAN
Chloroform	<4.00	4.00	ug/L	1			05/04/21 2146	RSD
Chloromethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dibromochloromethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dibromomethane (Methylene bromide)	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,2-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,3-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,4-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dichlorodifluoromethane (Freon-12)	<5.00	5.00	ug/L	1	Y1 .		05/04/21 2146	RSD
1,2-Dichloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,1-Dichloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
cis-1,2-Dichloroethene	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,1-Dichloroethene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
trans-1,2-Dichloroethene	<4.00	4.00	ug/L	1			05/04/21 2146	RSD
1,2-Dichloropropane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
cis-1,3-Dichloropropene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
trans-1,3-Dichloropropene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Ethylbenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Hexanone (MBK)	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Methyl tert-butyl ether (MTBE)	<5.00	5.00	ug/L	1	Y 1		05/04/21 2146	RSD
Methylene chloride (Dichloromethane)	<1.00	1.00	ug/L	1			05/04/21 2146	RSD
4-Methyl-2-pentanone (MIBK)	<10.0	10.0	ug/L	1	Y 1		05/04/21 2146	RSD
Styrene	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,1,2,2-Tetrachloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Tetrachloroethene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Toluene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,1,2-Trichloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,1,1-Trichloroethane	<5.00	5.00	ug/L	1	•		05/04/21 2146	RSD
Trichloroethene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Trichlorofluoromethane (Freon 11)	<5.00	5.00	ug/L	1			05/04/21 2146	RSD

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS

D1D2663

 Client Sample ID:
 West Plant Influent

 Sample Matrix:
 Wastewater
 Collected By:
 Customer

 Lab Sample ID:
 D1D2663-09
 Collection Date:
 04/28/2021
 8:00

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Vinvi chloride	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
m,p-Xylene	<10.0	10.0	ug/L	1	Y 1		05/04/21 2146	RSD
o-Xylene	<5.00	5.00	ug/L	1	Y 1		05/04/21 2146	RSD
Vinyl acetate	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
Surrogate: 1,2-Dichloroethane-d4	90.3	Limit: 70-130	% Rec	1			05/04/21 2146	RSD
Surrogate: 1,2-Dichloroethane-d4	97.5	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Toluene-d8	99.5	Limit: 70-130	% Rec	1			05/04/21 2146	RSD
Surrogate: Toluene-d8	104	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Pentafluorobenzene	94.5	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Pentafluorobenzene	101	Limit: 70-130	% Rec	1			05/04/21 2146	RSD

Definitions

US EPA Maximum Contaminant Level

MDL: Minimum Detection Limit

mg/L: Milligrams per Liter

Q11: The recovery for the low level check standard was outside of the quality control range.

RL: Reporting Limit

S2: Surrogate recovery is below acceptance limits.

ug/L: Micrograms per Liter

Y1: Accreditation is not offered by the accrediting body for this analyte.

Project Requested Certification(s)

Microbac Laboratories, Inc. - Dayville

M-CT008

Massachusetts Department of Environmental Protection

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

MMontgomery

Melisa L. Montgomery Quality Assurance Officer Reported: 05/14/2021 17:06

Microbac Laboratories, Inc.

OTHER Project Mgr: In case we have any questions when samples above we should call Day POS^ZH \checkmark ₹ Upon receipt at lab メ \forall ниО³ $\overline{\mathsf{x}}$ TOH ₽ NON-PRES URNAROUND TIME REQUESTED (select): | CARETY | RUSH 460 У Location: WEST PLOUT page. Longly. J У HARD COPY Project (PP aca) 201 Х oject Manager. E-MAIL: PHONE X ひさ CONDITIONS UPON RECEIPT: (CHECK ONE) Х AMBIENT b WO #: E-MAIL 970T 100,001 100,002 100,002 メ המצורו ימלפי TURNAROUND TIME REQUESTED My model Х Circle Delivery Method: X 8521008 COMPIENTS COOLED Ω ΉQ Marlborough, City of ナ abalcotts Sko Y SUUS 4 \checkmark 4 Bottle Qty a 16:35 2 50 Januar C\$27 75 PURCHASE ORDER #: У Grab y. Composite ሃ ATTN:_ 420 al J (82) F PHONE. E-MAIL: ADDRESS: RIXID BILL TO: Sample Matrix (30) 61 Louisa Vier Microbac Labora Dayville, CT Date Time
Collected Collected 3 级的 E-MAIL: CHITETING @ MOLIBONUGH-MO 33619 195 PM 138/Ja/ Some City of marripopriuds maribando ma Whoma price PHONE (SCC) (12) 4-16419FAXET GUSTODY TRANSTAR DELIVERY: DANOLS CHOMING 20's Bundan (A) MICROBAC. Sample Identification west Plant effluent 667 RECEIVED? ONLY TECHNOUISHED.

B RECEIVED:

C RELINQUISHED: **CUSTOMER:** ADDRESS: SAMPLERS RECEIVED:

CERTIFICATE OF ANALYSIS

D1D2663

Revised Report: Amended to fix sample name.

City of Marlborough

Alaina Davis 303 Boundary St. Marlborough, MA 01752 Project Name: West Plant

Project / PO Number: 20210043

Received: 04/28/2021 Reported: 05/17/2021

Analytical Testing Parameters

 Client Sample ID:
 West Plant Effluent

 Sample Matrix:
 Wastewater
 Collected By:
 Customer

 Lab Sample ID:
 D1D2663-01
 Collection Date:
 04/28/2021
 7:45

Semivolatile Organic Compounds by	Result	RL	Units	DF	Note	Prepared	Analyzed	Anaiysi
GCMS								
EPA 625.1								
Acenaphthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Acenaphthylene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Azobenzene	<1.00	1.00	ug/L	1	Y1	05/03/21 1000	05/06/21 0346	GMP
Benzidine	<5.00	5.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[a]anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[a]pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[b]fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[g,h,i]perylene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Benzo[k]fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Bromophenyl phenyl ether	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Butyl benzyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Chloro-3-methylphenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bls(2-Chloroethoxy)methane	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bis(2-Chloroethyl) ether	<0.500	0.500	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Chloronaphthalene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Chlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Chlorophenyl phenylether	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Chrysene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Dibenz(a,h) anthracene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Di-n-butyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
3,3-Dichlorobenzidine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dichlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Diethyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dimethylphenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Dimethyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dinitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4-Dinitrotoluene (2,4-DNT)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,6-Dinitrotoluene (2,6-DNT)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Di-n-octyl phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
bis(2-Ethylhexyl)phthalate	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Fluoranthene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Fluorene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorobutadiene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Hexachlorocyclopentadiene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS D1D2663

Client Sample ID:West Plant EffluentSample Matrix:WastewaterCollected By:CustomerLab Sample ID:D1D2663-01Collection Date:04/28/20217:45

Lab Sample ID: D1D2663-01					Collection	Date: 04/28/	04/28/2021 7:45	
Semivolatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Hexachloroethane	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Indeno(1,2,3-cd) pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Isophorone	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Methyl-4,6-dinitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Naphthalene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Nitrobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2-Nitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
4-Nitrophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodimethylamine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodiphenylamine	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
n-Nitrosodi-n-propylamine	<5.00	5.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,2'-Oxybis(1-Chloropropane)	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Pentachlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Phenanthrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Phenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Pyrene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
1,2,4-Trichlorobenzene	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
2,4,6-Trichlorophenol	<1.00	1.00	ug/L	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2-Fluorobiphenyl	30.0	Limit: 5-114	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2-Fluorophenol	0.140	Limit: 12-67	% Rec	1	\$2	05/03/21 1000	05/06/21 0346	GMP
Surrogate: Nitrobenzene-d5	32.1	Limit: 15-314	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: Phenol-d6	0.220	Limit: 12-46	% Rec	1	S2	05/03/21 1000	05/06/21 0346	GMP
Surrogate: p-Terphenyl-d14	41.2	Limit: 36-94	% Rec	1		05/03/21 1000	05/06/21 0346	GMP
Surrogate: 2,4,6-Tribromophenol	0	Limit: 28-101	% Rec	1	S2	05/03/21 1000	05/06/21 0346	GMP

CERTIFICATE OF ANALYSIS

D1D2663

 Client Sample ID:
 West Plant Effluent

 Sample Matrix:
 Wastewater
 Collected By:
 Customer

 Lab Sample ID:
 D1D2663-02
 Collection Date:
 04/28/2021
 7:45

Lab Sample ib. D 102003-02	0,000,000									
Pesticides and Polychlorinated Biphenyls (PCBs) by GC/ECD	Result	RL	Units	DF	Note	Prepared	Analyzed	Analysi		
EPA 608.3 GC-ECD										
Aldrin [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
alpha-BHC	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
(alpha-Hexachlorocyclohexane) [2C]							0.511.010.1.100.0	MDD		
beta-BHC	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
(beta-Hexachlorocyclohexane) [2C] delta-BHC [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
gamma-BHC (Lindane) [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Chlordane (tech.) [2C]	<0.200	0.200	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
4,4'-DDD [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
4,4'-DDE [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
4,4'-DDT [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Dieldrin [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Endosulfan I	0.0109	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Endosulfan II [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Endosulfan Sulfate [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Endrin [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Endrin Aldehyde [2C]	<0.0200	0.0200	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Heptachlor [2C]	<0.00400	0.00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Heptachlor epoxide [2C]	<0.00400	0,00400	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Toxaphene [2C]	<1.00	1.00	ug/L	1		04/29/21 1000	05/13/21 1602	MRB		
Aroclor-1016 (PCB-1016)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Aroclor-1221 (PCB-1221)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Aroclor-1232 (PCB-1232)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Aroclor-1242 (PCB-1242)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Aroclor-1248 (PCB-1248)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Aroclor-1254 (PCB-1254)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Araclar-1260 (PCB-1260)	<0.400	0.400	ug/L	1		04/29/21 1000	05/11/21 1753	MRB		
Surrogate: Decachlorobiphenyl (BZ-209)	72.4	Limit: 30-130	% Rec	1		04/29/21 1000	05/11/21 1753	MRB		
Surrogate: Decachlorobiphenyl (BZ-209)	59.9	Limit: 30-110	% Rec	1		04/29/21 1000	05/13/21 1602	MRB		
Surrogate: Decachlorobiphenyl (BZ-209) [2C]	60.8	Limit: 30-110	% Rec	1		04/29/21 1000	05/13/21 1602			
Surrogate: 2,4,5,6-Tetrachloro-m-xylene	60.8	Limit: 30-110	% Rec	1		04/29/21 1000	05/13/21 1602			
Surrogate: 2,4,5,6-Tetrachloro-m-xylene	64.2	Limit: 30-130	% Rec	1		04/29/21 1000	05/11/21 1753			
Surrogate: 2,4,5,6-Tetrachloro-m-xylene [2C]	53.8	Limit: 30-110	% Rec	1		04/29/21 1000	05/13/21 1602	MRB		

CERTIFICATE OF ANALYSIS

			D1D2	663					
Sample Matrix: W	/est Plant Effluent /astewater 1D2663-03					Collected E	•	ıstomer /28/2021 7:45	
Inorganics Total		Result	RL	Units	DF	Note	Prepared	l Analyzed	Analyst
SM 2540 D-2011									
Total Suspended Solids (T	rss)	<10.0	10.0	mg/L	4		04/29/21 20	20 04/30/21 1658	TJT
SM 5210 B-2011									
Biochemical Oxygen Dem	and (BOD5)	<2.00	2.00	mg/L	1		04/28/21 19	17 05/03/21 1319	AKS .
Inorganics Dissolved		Result	RL	Units	DF	Note	Prepared	I Analyzed	Analyst
EPA 365.1, Rv. 2 (1993)									
Phosphorus - Total as P		0.0616	0.0106	mg/L	1		04/28/21 19	00 04/29/21 1149	CLW
Sample Matrix: V	Vest Plant Effluent Vastewater o1D2663-04					Collected E	•	ustomer 1/28/2021 7:45	
Metals Total by CVAA		Result	RL	Units	DF	Note	Ргерагес	l Analyzed	Analyst
EPA 245.2									
Mercury		<0.00020	0.00020	mg/L	1		04/29/21 12	03 04/29/21 1359	MMC
Metals Total by ICP		Result	RL	Units	DF	Note	Prepared	d Analyzed	Analyst
EPA 200.7, Rv. 4.4 (1994)									
Aluminum	•	<0.0500	0.0500	mg/L	1		04/29/21 13	04/30/21 1716	DLO
Antimony		<0.0150	0.0150	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Arsenic		<0.0050	0.0050	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Beryllium		<0.0010	0.0010	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Cadmium		<0.0020	0.0020	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Chromium		<0.0020	0.0020	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Copper		0.0151	0.0020	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO
Lead		< 0.0030	0.0030	mg/L	1		04/29/21 13	349 04/30/21 1716	DLO

0.0050

0.0100

0.0020

0.0050

0.0050

0.0373

0.0180

<0.0100

<0.0020

< 0.0050

Nickel

Silver Thallium

Zinc

Selenium

mg/L

mg/L

mg/L

mg/L

mg/L

DLO

DLO

DLO

DLO

DLO

04/29/21 1349 04/30/21 1716

04/30/21 1716

04/30/21 1716

04/30/21 1716

04/30/21 1716

04/29/21 1349

04/29/21 1349

04/29/21 1349

04/29/21 1349

CERTIFICATE OF ANALYSIS

D1D2663

Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Effluent Wastewater D1D2663-05					Collected B		Custor 04/28/	mer 2021 7:45	
Inorganics Total		Result	RL	Units	DF	Note	Prepa	red	Analyzed	Analys
EPA 350.1, Rv. 2 (1993	3)									
Ammonia as N		0.112	0.0500	mg/L	1		04/30/21	1025	05/03/21 1652	CLW
EPA 365.1, Rv. 2 (1993	3)									
Phosphorus - Total as	P P	0.0871	0.0106	mg/L	1		04/28/21	1900	04/29/21 1140	CLW
Hach 8000										
Chemical Oxygen De	mand (COD)	21.8	5.00	mg/L	1		05/03/21	1826	05/03/21 1829	DJM
Client Sample ID: Sample Matrix:	West Plant Effluent Wastewater D1D2663-06					Collected E		Custo	mer 2021 8:00	.;
Lab Sample ID:	D1D2003-00	Pt		11?4	DF					Annius
Inorganics Total		Result	RL.	Units	DF	Note	Prepa	rea	Analyzed	Analys
EPA 335.4, Rv. 1 (1993 Cyanide - Total	3)	<0.0100	0.0100	mg/L	1	Q 1 1	04/30/21	1549	05/03/21 1316	CLW
Client Sample ID: Sample Matrix: Lab Sample ID:	West Plant Effluent Wastewater D1D2663-07		i i i i i i i i i i i i i i i i i i i	<u> </u>		Collected E	•	Custor 04/28/		
Inorganics Total		Result	RL	Units	DF	Note	Prepa	red	Analyzed	Analys
EPA 1664A										
Oil & Grease		<2.11	2.11	mg/L	1		04/29/21	1055	04/30/21 1458	HEP
Client Sample ID:	West Plant Effluent			V-17						
Sample Matrix: Lab Sample ID:	Wastewater D1D2663-08					Collected E Collection	-	Custo 04/28/	mer 2021 8:00	
Inorganics Total		Result	RL	Units	DF	Note	Prepa	red	Analyzed	Analys
EPA 420.1										
Phenols		<0.0300	0.0300	mg/L	1		05/04/21	0853	05/04/21 1629	CL.W

CERTIFICATE OF ANALYSIS

D1D2663

Client Sample ID: West Plant Effluent
Sample Matrix: Wastewater

Collected By:

Customer

Lab Sample ID: D1D2663-09 Collection Date:

04/28/2021 8:00

Lab Sample ID: D1D2663-09		3/2021 8:00	8:00					
Volatile Organic Compounds by GCMS	Result	RL.	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 624.1								
Acetone	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Acrolein	<20.0	20.0	ug/L	1			04/29/21 1902	JAN
Acrylonitrile	<20.0	20.0	ug/L	1			05/04/21 2146	RSD
Benzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Bromodichloromethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Bromoform	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Bromomethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Butanone (MEK)	<10.0	10.0	ug/L	1	Y 1		05/04/21 2146	RSD
Carbon disulfide	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
Carbon tetrachloride	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Chlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Chloroethane (Ethyl chloride)	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Chloroethyl vinyl ether	<20.0	20.0	ug/L	1			04/29/21 1902	JAN
Chloroform	<4.00	4.00	ug/L	1			05/04/21 2146	RSD
Chloromethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dibromochloromethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dibromomethane (Methylene bromide)	<5.00	5.00	ug/L	1	Y1	•	05/04/21 2146	RSD
1,2-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,3-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,4-Dichlorobenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Dichlorodifluoromethane (Freon-12)	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,2-Dichloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,1-Dichloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
cis-1,2-Dichloroethene	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,1-Dichloroethene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
trans-1,2-Dichloroethene	<4.00	4.00	ug/L	1			05/04/21 2146	RSD
1,2-Dichloropropane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
cis-1,3-Dichloropropeпе	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
trans-1,3-Dichloropropene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Ethylbenzene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
2-Hexanone (MBK)	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Methyl tert-butyl ether (MTBE)	<5.00	5.00	ug/L	1	Y 1		05/04/21 2146	RSD
Methylene chloride (Dichloromethane)	<1.00	1.00	ug/L	1			05/04/21 2146	RSD
4-Methyl-2-pentanone (MIBK)	<10.0	10.0	ug/L	1	Y1		05/04/21 2146	RSD
Styrene	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
1,1,2,2-Tetrachloroethane	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Tetrachloroethene	<5.00	5,00	ug/L	1			05/04/21 2146	RSD
Toluene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
1,1,2-Trichloroethane	<5,00	5.00	ug/L	1			05/04/21 2146	RSD
1,1,1-Trichloroethane	<5,00	5.00	ug/L	1			05/04/21 2146	RSD
Trichloroethene	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
Trichlorofluoromethane (Freon 11)	<5.00	5.00	ug/L	1			05/04/21 2146	RSD

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS

D1D2663

Client Sample ID:

West Plant Effluent

Sample Matrix:

Wastewater

Collected By:

Customer

Lab Sample ID: D1D2663-09					Collection E	Date: 04/28	/2021 8:00	
Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Vinyl chloride	<5.00	5.00	ug/L	1			05/04/21 2146	RSD
m,p-Xylene	<10.0	10.0	ug/L	1	Y 1		05/04/21 2146	RSD
o-Xylene	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
Vinyl acetate	<5.00	5.00	ug/L	1	Y1		05/04/21 2146	RSD
Surrogate: 1,2-Dichloroethane-d4	90.3	Limit: 70-130	% Rec	1			05/04/21 2146	RSD
Surrogate: 1,2-Dichloroethane-d4	97.5	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Toluene-d8	99.5	Limit: 70-130	% Rec	. 1			05/04/21 2146	RSD
Surrogate: Toluene-d8	104	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Pentafluorobenzene	94.5	Limit: 70-130	% Rec	1			04/29/21 1902	JAN
Surrogate: Pentafluorobenzene	101	Limit: 70-130	% Rec	1			05/04/21 2146	RSD

Definitions

MCL:

US EPA Maximum Contaminant Level

MDL:

Minimum Detection Limit Milligrams per Liter

mg/L:

The recovery for the low level check standard was outside of the quality control range.

Q11: RL:

Reporting Limit

S2:

Surrogate recovery is below acceptance limits.

ug/L:

Micrograms per Liter

Y1:

Accreditation is not offered by the accrediting body for this analyte.

Project Requested Certification(s)

Microbac Laboratories, Inc. - Dayville

M-CT008

Massachusetts Department of Environmental Protection

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

MMontgomery

Melisa L. Montgomery Quality Assurance Officer Reported: 05/17/2021 15:00

Microbac Laboratories, Inc.

OTHER Project Mgr: In casewe have any questions when samples arravewe should call: Day os²H '≰ Upon receipt at lab メ НИО3 Х OTHER HCF ₽ NON-PRES OUND TIME REQUESTED (select): RESERVATIVE RUSH 460) У Location: West Ploint ICHONS! У HARD COPY Project: 189 ACA 1 001 oject Manager: E-MAIL: ξ **PHONE:** CONDITIONS UPON RECEIPT: (CHECK ONE) AMBIENT bWO#: E-MAIL 0707 (0), 10113-12 1000 1000 1 ゝ washringter TURNAROUND TIME REQUESTED A wald \Box Circle Delivery Method: 22T1008 COOLED COMMENTS SOM Marlborough, City of aba100743 ナ Ska У ST THE 4 1 4 Bottle Qty æ 10 × 51 16:35 6827 PURCHASE ORDER #: У ሂ χ Grab 1620 Composite Y ATTN: PHONE. E-MAIL: CHYCHONG @ PROCIEDING APPORT BOD E-MAIL. J287 42012 ADDRESS: BILL TO: DATE Sample Matrix (3)(3) Microbac Labora 61 Louisa Vier Dayville, CT Date Time Collected 3 24.55 73.455 らいい 33619 419517 4300 City of mariboprical maribanoud ma 2013 Brindon St GISTONARAN SEER PHONE: (SCC) (0.34-16-419FAX-4 DELIVERY: JACYOLIS C'HOMMO (A) MICHOBAC. Sample Identification effluent RECEIVED ON A West Plant A RELINQUISHED:
a SeceNED:
a RELINQUISHED: ADDRESS: **CUSTOMER:** SAMPLER ECEIVED:

West Plant Sludge Analysis

CERTIFICATE OF ANALYSIS

D1E1411

City of Marlborough

Project Name: West Plant Sludge Cake

Dennis Lhomme 303 Boundary St. Project / PO Number: 20210043

Marlborough, MA 01752

Received: 05/13/2021 Reported: 05/20/2021

Analytical Testing Parameters

Client Sample ID: Sample Matrix:

West Plant Sludge

Solid

Collected By:

Customer

05/12/2021 12:00

Lab Sample ID:	D1E1411-01					Collection I	Jate: U5/12/	2021 1230	· · · · · · · · · · · · · · · · · · ·
Inorganics Total	www.service.com	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 2540 G-1997									
Percent Sollds		2.90		% (by wt.)	1	Y1	05/18/21 1524	05/19/21 1442	SRF
Metals Total by CVAA		Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 7471B									
Mercury		<1.14	1.14	mg/kg dry	1	Y1	05/19/21 1045	05/19/21 1156	MMC
Metals Total by ICP		Result	RL	Units	DF	Note	Prepared	Analyzed	Anaiyst
EPA 3050B/EPA 6010C									
Álumínum		2210	86.2	mg/kg dry	1	Y1	05/17/21 1449	05/18/21 2147	DLO
Antimony		<5.17	5.17	mg/kg dry	1	Υ¹	05/17/21 1449	05/18/21 2147	DLO
Arsenic		12,7	8,62	mg/kg dry	1	Q10,Y1	05/17/21 1449	05/19/21 1932	DLO
Beryllium		<1.72	1.72	mg/kg dry	1	Y1	05/17/21 1449	05/18/21 2147	DLO
Cadmium		<3.45	3.45	mg/kg dry	1	Y1	05/17/21 1449	05/18/21 2147	DLO
Chromium		164	3.45	mg/kg dry	1	Y1	05/17/21 1449	05/18/21 2147	DLÖ
Copper		335	3,45	mg/kg dry	1	ΥI	05/17/21 1449	05/18/21 2147	DLO
Lead		12.5	5.17	mg/kg dry	1	Ÿ1	05/17/21 1449	05/18/21 2147	DLO
Molybdenum		41.0	3,45	mg/kg dry	1	Y1	05/17/21 1449	05/18/21 2147	DLO
Nickel		112	8.62	mg/kg dry	1	ΥÍ	05/17/21 1449	05/18/21 2147	DLO
Selenium		<8.62		mg/kg dry	1	R3,Y1	05/17/21 1449	05/20/21 1404	DLO
		<3.45			1	Y 1	05/17/21 1449	05/18/21 2147	DLO
Silver		<8.62		mg/kg dry	.1	Υİ	05/17/21 1449	05/19/21 1932	DLO
Thallium Zinc		340	8:62	• •	.1	Y1	05/17/21 1449	05/18/21 2147	DLO

Definitions

% (by wt.):

Percent by Weight

Q10:

The recovery for the closing low level check standard was outside of the established quality control range. The initial low

level check standard was within range.

R3:

Duplicate RPD is outside of acceptance criteria. The difference between the results is less than 2x Method Reporting

Limit,

RL:

Y1:

Accreditation is not offered by the accrediting body for this analyte.

Project Requested Certification(s)

Microbac Laboratories, Inc. - Dayville

M-CT008

Massachusetts Department of Environmental Protection

Microbac Laboratories, Inc. - Dayville CERTIFICATE OF ANALYSIS D1E1411

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Montgomery

Melisa L. Montgomery
Quality Assurance Officer

Reported: 05/20/2021 17:22

Date/Time | 11:59 Additional Notes Samples Received on Icely es No N/A Custody Seals Intact? Yes No N/A Temperature Upon Receipt (°C) [] Results Only [] Level 1 [] Level 2 [] Level 3 [] Level 4 [] EDD Ext 33819 Sample Disposition [] Dispose as appropriate [] Return [] Archive Compliance Monitoring? [] Yes [] No () Agency/Program TO BE COMPLETED BY M instructions on back ** Preservative Types. (1) HNO3, (2) H25O4, (3) HCl, (4) NaOH, (5) Zinc Acetate, (6) Methanol. (7) Sodium Bisulfate, (8) Sodium Thioxulfate, (9) Hexane, (U) Unpreserved Holding Time * Matrix Types: Soil/Soild (5), Sludge, Oil, Wipe, Drinking Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) No.: 508-634-6919 Received By (signature) teceived By (signature) [] Mail [] Fax Kemall (address) REQUESTED ANALYSIS (5 to 7 busine otify lab) A (needed by) PO No.: 20210043 OW 5-13-2021 16:45 Date/Illie Report Type MAGEI OS-12-2031 Date/Time Send Invoice via: 501105 % **Date/Time** Preservative Types Location: Westerly WWTP Signature: Que Itala City, State, Zip: (A/N) C (gmo2) deta Relinquished By (signature) KSA Assa. [] Hazardous [] Non-Hazardous [] Radioactive Martborough, City of (1) No. of Containers Telephone No.: Time Collected OGSO-C2F-21-59 MICROBAC 61 Louisa Viens Dr., Dayville, CT 062. Collected [] Wail [] Fax Me-mail (address) Telephone No.: 508-634-6919 EX 33819 av, state, zip; Mar lkorzugh MA 01753 please Report results on a dry Client Name: Crty of Maribotough MA Address 303 Boundary Street MRS/ewaler Studios Sampled by (PRINT): Dennis CH & mine Client Sample ID Nesi Plant Studye Contact Denns L'Hamme Possible Hazard Identification (Quabli) Page 3 of 3 Send Report via: rev. 7/18/18 tab ID Project:

CHAIN OF CUSTODY RECORD

Significant Industrial Users

Significant Industrial Users

Categorical Industries

Category

API Technologies 400 Nickerson Rd. Marlborough, MA 01752

Dav-Tech Plating, Inc. 40 Cedar Hill Street Marlborough, MA 01752

Diamond Machine Technology, Inc. 85 Hayes Memorial Drive Marlborough, MA 01752

Ktron, Inc. 583 Berlin Rd. Marlborough, MA 01752

Ruland Manufacturing Co,. Inc. 6 Hayes Memorial Drive Marlborough, MA 01752 Metal Finishing Point Source Category Subpart A-Metal Finishing Subcategory 40 CFR 433.15 Pretreatment Standards for new sources (PSNS)

Metal Finishing Point Source Category Subpart A-Metal Finishing Subcategory 40 CFR 433.15 Pretreatment Standards for Existing Sources (PSES)

Metal Finishing Point Source Category Subpart A-Metal Finishing Subcategory 40 CFR 413.15 Pretreatment Standards for New Sources (PSNS)

Subpart A-Metal Finishing Subcategory 40 CFR 433.15 Pretreatment Standards for Existing Sources (PSES)

Subpart A Metal Finishing Subcategory 40 CFR 433.17 Pretreatment Standards for New Sources (PSNS)

Non - Categorical Significant Industries: (40 CFR Part 403)

Gotham Ink Corp. 255 East Main Street Marlborough, MA 01752

Ken's Foods, Inc. 1 D'Angelo Drive Marlborough, Ma 01752

Massachusetts Water Resources Authority 84 D'Angelo Drive Marlborough, MA 01752

Quest Diagnostics 200 Forest Street Marlborough, MA 01752

Rohm & Haas Advanced Materials (Formally Dow Advanced Materials) 455 Forest St Marlborough MA 01752

Saint-Gobain High Performance Materials, Inc. 9 Goddard Road Northborough, MA 01752